Skip to main content

Advertisement

Log in

Effects of mire type, land use and climate on a strongly declining wetland butterfly

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Mires are characterised by highly specialised and threatened wildlife. One of these mire specialists that has severely declined is the Large Heath (Coenonympha tullia). However, detailed studies concerning the reasons for the dramatic population loss in central Europe are missing so far. In this paper: (1) we analyse the habitat preferences of adult C. tullia and oviposition site selection with respect to mire type and land use in one of the last German strongholds, and (2) we attempt to disentangle the impacts of land use and climate change on the decline of C. tullia on a national scale across Germany. Abundance of adult C. tullia was clearly affected by mire type and land use. It was highest on managed calcareous fens and lowest on unmanaged transition and raised bogs. The oviposition pattern of C. tullia females was best explained by (1) quantity of potential host plants (Eriophorum latifolium), (2) vegetation structure, and (3) microclimate. In Germany, C. tullia populations have become extinct in lowlands with a mild and relatively dry climate while most colonies in wet and cold mountain areas have survived. However, there is evidence that habitat loss and habitat deterioration, rather than climate change, are the drivers of the range retraction. To create low-growing vegetation rich in E. latifolium, traditional mowing late in the year and light grazing seem to be suitable management tools. In addition, conservation management should aim to maintain high water levels or restore them, especially to counteract effects of climate change in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and metapopulation structure—the key for successful management of prealpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185

    Article  Google Scholar 

  • Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The Millenium Atlas of butterflies in Britain and Ireland. Oxford University Press, Oxford

    Google Scholar 

  • Bates D, Maechler M, Dai B (2008) lme4: linear mixed-effects models using S4 classes. R Package Version 0.999375-28. http://lme4.r-forge.r-project.org

  • Bayerisches Landesamt für Umweltschutz (ed) (2001) Artenschutzkartierung Bayern. Arbeitsatlas Tagfalter. Augsburg

  • Beneš J, Konvička M, Dvořák J, Fric Z, Haveld Z, Pavlíčko A, Vrabec V, Weidenhoffer Z (eds) (2002) Motýli České republiky: Rozšířeni a ochrana I, II (Butterflies of Czech Republic: distribution and conservation I, II). SOM, Prague

    Google Scholar 

  • Beyer L, Schultz CB (2010) Oviposition selection by rare grass skipper Polites mardon in montane habitats: advancing ecological understanding for developing conservation strategies. Biol Conserv 143:862–872. doi:10.1016/j.biocon.2009.12.031

    Article  Google Scholar 

  • Bink FA (1992) Ecologische Atlas van de Dagvlinders van Noordwest-Europa. Schuyt and Co, Haarlem

    Google Scholar 

  • Bos F, Bosveld M, Groenendijk G, Van Swaay C, Wynhoff I (2006) De dagvlinders van Nederland, verspreiding en bescherming (Lepidoptera: Hesperioidea, Papilionoidea), Nederlandse Fauna 7. Nationaal Natuurhistorisch Museum Naturalis, KNNV Uitgeverij and European Invertebrate Survey, The Netherlands, Leiden

    Google Scholar 

  • Bourn NAD, Warren MS (1997) Species action plan: large heath (Coenonympha tullia). Butterfly Conservation, Dorset

    Google Scholar 

  • Bräu M (1995) Tierwelt. In: Quinger B, Schwab U, Ringler A, Bräu M, Strohwasser R, Weber J (eds) Lebensraumtyp Streuwiesen. Landschaftspflegekonzept Bayern, Band II.9. Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen (StMLU) and Bayerische Akademie für Naturschutz und Landschaftspflege (ANL), München, pp 93–133

  • Crawley MJ (2002) Statistical computing: an introduction to data analysis using S-Plus. Wiley, Chichester

    Google Scholar 

  • Dennis RLH (1993) Butterflies and climate change. Manchester University Press, Manchester

    Google Scholar 

  • Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Müller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Conserv 1:167–176. doi:10.1023/A:1018455714879

    Article  Google Scholar 

  • Dennis RLH, Eales HT (1999) Probability of site occupancy in the large heath butterfly Coenonympha tullia determined from geographical and ecological data. Biol Conserv 87:295–301. doi:10.1016/S0006-3207(98)00080-9

    Article  Google Scholar 

  • Dierßen K, Dierßen B (2008) Moore. In: Pott R (ed) Ökosysteme Mitteleuropas aus geobotanischer Sicht. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Ebenhard T (1995) Wetland butterflies in a fragmented landscape: the survival of small populations. Ent Tidskr 116:73–82

    Google Scholar 

  • Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Band 2, Tagfalter 2. Eugen Ulmer, Stuttgart

  • EC (European Commission) (2007) Interpretation manual of European Union habitats—EUR27. European Commission, DG Environment, Brussels

    Google Scholar 

  • Eggelsmann R (1990) Mikroklima der Moore. In: Göttlich K (ed) Moor- und Torfkunde. E Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 374–384

    Google Scholar 

  • Ehrlich PR, Hanski I (eds) (2004) On the wings of checkerspots: a model system for population biology. Oxford University Press, New York

    Google Scholar 

  • Eichel S, Fartmann T (2008) Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J Insect Conserv 12:677–688. doi:10.1007/s10841-007-9110-9

    Article  Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen, 6th edn. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Engel DE (1987) Beitrag zur Faunistik der hessischen Tagfalter (Insecta: Papilionoidea). In: Entomologischer Verein Apollo e.V (eds) Nachrichten des entomologischen Vereins Apollo. Frankfurt am Main

  • Fartmann T (2006) Oviposition preferences, adjacency of old woodland and isolation explain the distribution of the Duke of Burgundy butterfly (Hamearis lucina) in calcareous grasslands in central Germany. Ann Zool Fennici 43(4):335–347

    Google Scholar 

  • Fartmann T, Hermann G (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa—von den Anfängen bis heute. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abhandlungen aus dem Westfälischen Museum für Naturkunde 68(3/4):11–57

  • Fox R, Asher J, Brereton T, Roy D, Warren MS (2006) The state of butterflies in Britain and Ireland. Pisces Publ. for Butterfly Conservation, Newbury

    Google Scholar 

  • Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Change Biol 12:1545–1553. doi:10.1111/j.1365-2486.2006.01180.x

    Article  Google Scholar 

  • García-Barros E, Fartmann T (2009) Butterfly oviposition: sites, behaviour and modes. In: Settele J, Shreeve TG, Konvička M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 39–42

    Google Scholar 

  • Gelbrecht J, Kallies A, Gerstberger M, Dommain R, Göritz U, Hoppe H, Richert A, Rosenbauer F, Schneider A, Sobczyk T, Weidlich M (2003) Die aktuelle Verbreitung der Schmetterlinge der nährstoffarmen und sauren Moore des nordostdeutschen Tieflandes (Lepidoptera). Märkische Ent Nachr 5(1):1–68

    Google Scholar 

  • Harkort W (1975) Schmetterlinge in Westfalen (ohne Ostwestfalen). Fundortkarten und Fundortlisten; Stand Ende 1974. Dortmunder Beiträge zur Landeskunde. Naturwissenschaftliche Mitteilungen 9:33–102

    Google Scholar 

  • Hill JK, Thomas CD, Huntley B (2003) Modeling present and potential future ranges of European butterflies using climate response surfaces. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies. Ecology and evolution taking flight. The University of Chicago Press, Chicago, pp 149–167

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Joosten H, Couwenberg J (2001) Bilanzen zum Moorverlust. Das Beispiel Europa. In: Succow M, Joosten H (eds) Landschaftsökologische Moorkunde. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 406–408

  • Joy J, Pullin AS (1997) The effects of flooding on the survival and behaviour of overwintering large heath butterfly Coenonympha tullia larvae. Biol Conserv 82:61–66. doi:10.1016/S0006-3207(97)00006-2

    Article  Google Scholar 

  • Kaule G (1974) Die Übergangs- und Hochmoore Süddeutschlands und der Vogesen. Dissertationes Botanicae 27

  • Kolligs D (2003) Schmetterlinge Schleswig-Holsteins. Atlas der Tagfalter, Dickkopffalter und Widderchen. Wachholz Verlag, Neumünster

  • Krämer B, Poniatowski D, Fartmann T (2012) Effects of landscape and habitat quality on butterfly communities in pre-alpine calcareous grasslands. Biol Conserv 152:253–261. doi:10.1016/j.biocon.2012.03.038

    Article  Google Scholar 

  • Kudrna O (2002) The distribution atlas of European butterflies. Oedippus 20:1–342

    Google Scholar 

  • Marthaler S (2010) Ansprüche des Großen Wiesenvögelchens (Coenonympha tullia O.F. Müller, 1764) an Standort und Vegetation im Boniswilerried Kt. Aargau. Bachelorarbeit, Zürcher Hochschule für Angewandte Wissenschaften ZHAW, Wädenswil (unpubl.)

  • Meineke JU (1985) Die Situation moorgebundener Groß-Schmetterlingsarten in Nordrhein-Westfalen. Telma 15:75–100

    Google Scholar 

  • Melling T (1984) Discovery of the larvae of the Large Heath (Coenonympha tullia) in the wild. Entomol Record J Variation 96:231–232

    Google Scholar 

  • Melling T (1989) Coenonympha tullia (Müller). The large heath. In: Emmet AM, Heath J (eds) The moths and butterflies of Great Britain and Ireland, 7(1), Hesperiidae–Nymphalidae. Harley Books, Colchester, pp 280–282

    Google Scholar 

  • Möllenbeck V, Hermann G, Fartmann T (2009) Does prescribed burning mean a threat to the rare satyrine butterfly Hipparchia fagi? Larval-habitat preferences give the answer. J Insect Conserv 13:77–87. doi:10.1007/s10841-007-9128-z

    Article  Google Scholar 

  • Munguira M, García-Barros E, Cano JM (2009) Butterfly herbivory and larval ecology. In: Settele J, Shreeve TG, Konvicka M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 43–54

    Google Scholar 

  • Niedersächsisches Landesamt für Ökologie (ed) (2001) Verbreitung Tagfalter

  • Oberdorfer E (ed) (1998) Süddeutsche Pflanzengesellschaften. Teil I: Fels- und Mauer-gesellschaften, alpine Fluren, Wasser-, Verlandungs- und Moorgesellschaften, 4th edn. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Oberdorfer E (2001) Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete, 8th edn. Ulmer, Stuttgart

    Google Scholar 

  • Parish F, Sirin A, Charman D, Joosten H, Minaeva T, Silvius M (eds) (2008) Assessment on peatlands, biodiversity and climate change. Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen

    Google Scholar 

  • Pollard E (1977) Method for assessing changes in abundance of butterflies. Biol Conserv 12:115–134. doi:10.1016/0006-3207(77)90065-9

    Article  Google Scholar 

  • Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. Chapman and Hall, London

    Google Scholar 

  • Poniatowski D, Fartmann T (2008) The classification of insect communities: lessons from orthopteran assemblages of semi-dry calcareous grasslands in central Germany. Eur J Entomol 105:659–671

    Google Scholar 

  • Poniatowski D, Fartmann T (2011) Weather-driven changes in population density determine wing dimorphism in a bush-cricket species. Agric Ecosyst Environ 145:5–9

    Article  Google Scholar 

  • Quinger B, Schwab U, Ringler A, Bräu M, Strohwasser R, Weber J (1995) Lebensraumtyp Streuwiesen. Landschaftspflegekonzept Bayern, Band II.9. Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen (StMLU) and Bayerische Akademie für Naturschutz und Landschaftspflege (ANL), München

  • Reinhardt R, Bolz R (2011) Rote Liste und Gesamtartenliste der Tagfalter (Rhopalocera) (Lepidoptera: Papilionoidea et Hesperioidea) Deutschlands. Natursch Biol Vielfalt 70(3):167–194

    Google Scholar 

  • Rennwald E (2007) Großes Wiesenvögelchen—Coenonympha tullia (O.F. Müller, 1764). In: Schulte T, Eller O, Niehuis M, Rennwald E (eds) Die Tagfalter der Pfalz. Band 2. Fauna und Flora in Rheinland-Pfalz, Beiheft 37:620–625

  • Retzlaff H (1973) Die Schmetterlinge von Ostwestfalen-Lippe und einigen angrenzenden Gebieten Hessens und Niedersachsens (Weserbergland, südöstliches Westfälisches Tiefland und östliche Westfälische Bucht). I Teil Ber Naturwiss Ver Bielef 21:129–248

    Google Scholar 

  • Rydin H, Jeglum JK (2006) The biology of peatlands. Oxford Univ. Press, Oxford

    Book  Google Scholar 

  • SBN (ed) (1987) Tagfalter und ihre Lebensräume—Arten, Gefährdung, Schutz. Fotorotar AG, Egg/ZH

  • Settele J, Dover J, Dolek M, Konvicka M (2009) Butterflies of European ecosystems: impact of land use and options for conservation management. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. CUP, Cambridge, pp 353–370

    Google Scholar 

  • Stamm K (1981) Prodromus der Lepidopteren-Fauna der Rheinlande und Westfalens. Selbstverlag, Solingen

    Google Scholar 

  • Stoutjesdijk P, Barkman JJ (1992) Microclimate vegetation and fauna. Opulus Press, Uppsala

    Google Scholar 

  • Streitberger M, Hermann G, Kraus W, Fartmann T (2012) Modern forest management and the decline of the Woodland Brown (Lopinga achine) in Central Europe. For Ecol Manage 269:239–248. doi:10.1016/j.foreco.2011.12.028

    Article  Google Scholar 

  • Succow M, Jeschke L (1990) Moore in der Landschaft. Urania-Verlag, Leipzig

    Google Scholar 

  • Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos Trans R Soc Lond Ser B Biol Sci 360:339–357

    Article  CAS  Google Scholar 

  • Thomas JA, Clarke RT (2004) Extinction rates and butterflies. Science 305:1563–1564

    Article  CAS  Google Scholar 

  • Thomas JA, Lewington R (2010) The butterflies of Britain and Ireland. British Wildlife Publishing Ltd, Gillingham

    Google Scholar 

  • Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond Ser B 268:1791–1796

    Article  CAS  Google Scholar 

  • Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881. doi:10.1126/science.1095046

    Article  PubMed  CAS  Google Scholar 

  • Tonne F (1954) Besser Bauen mit Besonnungs- und Tageslicht-Planung. Hofmann, Schorndorf

    Google Scholar 

  • Trautner J, Hermann G, Rietze J (2004) Weidewirkung auf Tierarten und -zönosen. In: Lederbogen D, Rosenthal G, Scholle D, Trautner J, Zimmermann B, Kaule G (eds) Allmendweiden in Südbayern: Naturschutz durch landwirtschaftliche Nutzung. Bundesamt für Naturschutz. Angewandte Landschaftsökologie 62:275–285

  • Turlure C, Choutt J, Baguette M, Van Dyck H (2010) Microclimatic buffering and resource-based habitat in a glacial relict butterfly: significance for conservation under climate change. Glob Change Biol 16:1883–1893. doi:10.1111/j.1365-2486.2009.02133.x

    Article  Google Scholar 

  • Van Swaay CAM, Warren MS (1999) Red Data book of European butterflies (Rhopalocera). Nature and Environment, No 99, Council of Europe Publishing, Strasbourg

  • Van Swaay CAM, Warren MS (eds) (2003) Prime butterfly areas in Europe: priority sites for conservation. National Reference Centre for Agriculture, Nature and Fisheries, Ministry of Agriculture, Nature Management and Fisheries, Wageningen

    Google Scholar 

  • Van Swaay CAM, Warren MS, Lois G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209. doi:10.1007/s10841-006-6293-4

    Article  Google Scholar 

  • Van Swaay CAM, Cuttelod A, Collins S, Maes D, Lopez Munguira M, Šašić M, Settele J, Verovnik R, Verstrael T, Warren MS, Wiemers M, Wynhof I (2010) European red list of butterflies. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Wagner A (2000) Minerotrophe Bergkiefernmoore im süddeutschen Alpenvorland. Die Carex lasiocarpa-Pinus rotundata-Gesellschaft. Diss. Lehrstuhl für Vegetationsökologie TUM

  • Wainwright D (2007) The status of the Large Heath butterfly on the North York Moors. In: Hammont M (ed) Moorland research review 2000–2005. North York Moors National Park Authority

  • WallisDeVries MF (2006) Larval habitat quality and its significance for the conservation of Melitaea cinxia in northwestern Europe. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abhandlungen aus dem Westfälischen Museum für Naturkunde 68:281–294

  • Watt WB, Boggs CL (2003) Synthesis: butterflies as model systems in ecology and evolution—present and future. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies—ecology and evolution taking flight. The University of Chicago Press, Chicago, pp 603–613

    Google Scholar 

  • Werno A (2011) Lepidoptera-Atlas 2010. Verbreitungskarten (Lepidoptera) im Saarland und Randgebieten. http://www.delattinia.de/saar_lepi_online/index.htm. Accessed 05 Jan 2013

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful to Wolfgang Kraus (Landratsamt Garmisch-Partenkirchen) for helpful information concerning the study area. Two anonymous referees made valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Fartmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weking, S., Hermann, G. & Fartmann, T. Effects of mire type, land use and climate on a strongly declining wetland butterfly. J Insect Conserv 17, 1081–1091 (2013). https://doi.org/10.1007/s10841-013-9585-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-013-9585-5

Keywords

Navigation